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As atoms migrate along void surface and grain-boundary driven by various
thermodynamic forces, the grain-boundary void changes its shape and volume. A rounded
void may become unstable and collapse. The void instability is an outcome of the
competition between the variation in the elastic energy stored in the stressed solid, the
void surface and grain-boundary energies. In this article, the instability conditions and the
equilibrium shape of a gas-filled grain-boundary void are first determined, and then an
explicit expression for the shrinkage rate is derived as a function of the void spacing, the
applied stress, the internal pressure built up by the gas filled in the void as well as relevant
material parameters. C© 2004 Kluwer Academic Publishers

1. Introduction
The polycrystalline materials used at elevated tempera-
ture tend to develop voids on the grain-boundaries, es-
pecially on those approximately normal to the applied
stress. Their growth and coalescence lead to intergran-
ular failure [1, 2]. The grain-boundaries form a contin-
uous diffusion network for atoms [3]. Due to this fast
diffusion path, the grain-boundary voids will shrink as
atoms diffuse along the grain-boundaries into the voids
[4]; or grow as atoms diffuse from the void surface into
the grain-boundary [5]. The void growth or shrinkage
on the planar bonding interface or on the planar grain-
boundary interface was studied by many investigators
[6, 7]. Some void shrinkage models [8–10] were de-
veloped from powder sintering models [11], and others
[12, 13] were derived from void growth models [5, 14].

In the previous works, main attention has been paid
to the rate of void growth (or shrinkage) under the as-
sumption that the void maintains its spherical shape as
it shrinks or grows [6, 15]. However, a rounded void
can collapse into a crack by surface diffusion when the
applied stress exceeds a critical value [16–20]. The fi-
nal shape of a void within a grain is an outcome of the
competition between the variation in the elastic energy
stored in the solid and the surface energy [19, 20].

The situation becomes more complicated for grain-
boundary voids. Experimental observations showed
that the equilibrium shape of a grain-boundary void
is a spheroid with elongation in grain-boundary, not a
sphere [21]. Furthermore, as the grain-boundary void
changes its shape and volume, the variation in the free
energy of the system comes not only from the surface
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energy and the elastic energy stored in the solid, but
also from the grain-boundary energy. The stable shape
of a grain-boundary void, which has never been ex-
plored, would be a result of the competition between
the variation in the elastic energy, the surface and grain-
boundary energies.

The instability of a void within grain has been stud-
ied both in the case of volume-conserving [20] and in a
rate of shrinkage and growing [22] for two-dimensional
model, i.e., when the void is a cylindrical pore with
rounded section. An explicit expression for the shrink-
age rate has been obtained for the pore with a circu-
lar section [22], where the rate is controlled by lattice
diffusion. However, the cylindrical pore is unstable. It
tends to split into an array of discrete spheroidal voids
via Rayleigh instability. Hence, the shape of a grain-
boundary void observed by experiment is mostly in
spheroidal state. Although the rate process between a
void within a grain and a void on grain-boundary has
some physical similarities, there is substantial differ-
ence between them: the former is controlled by grain-
boundary diffusion while the latter by lattice diffusion.
It is well known that the grain-boundary diffusion is
several orders faster than the lattice diffusion. A quan-
titative estimation for evolving rate of a grain-boundary
void is very desirable, because it is very important both
in theory and practice as voids play a role in several im-
portant physical processes, such as diffusion bonding,
powder sintering and damage healing [23].

Another concern is that the gas may diffuse into
the void by some physical mechanisms. Experiments
showed that the internal pressure built up by the gas
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reduces the tendency for a void to collapse [21].
However, this has not been justified by any theoretical
analysis.

In this article, we will first study the instability of
a gas-filled grain-boundary void, and map out diverse
evolving paths and identify the controlling parameters.
Then an explicit expression for the shrinkage rate of a
grain-boundary void will be derived. The analysis as-
sumes that surface diffusion is sufficiently rapid com-
pared to grain-boundary diffusion. Lattice diffusion and
platicity are assumed to be negligible, so that only void
surface and grain-boundary diffusions are the dissipa-
tive processes included in this analysis.

2. Energetics of an evolving grain-boundary
void

Fig. 1 shows the three-dimensional model of a gas-
filled oblate spheroidal void in infinite elastic solid. As
diffusion varies the void, the solid varies its elastic field,
the volume and shape of the void. Here an axisymmetric
problem will be analyzed in which the void evolves as
a sequence of oblate spheroids. The semi-axes of the
void on the xy plane are equal under the remote triaxial
stresses σ1 = σ2 ≤ σ3 and an internal pressure p,
such that as diffusion changes the shape of the xz cross-
section of the void, its shape in the xy cross-section
maintains circle. Hence, the void can be represented by
its xz cross-section.

2.1. The thermodynamic potential
The thermodynamic potential, consisting of elastic en-
ergy, void surface and grain-boundary energies, is a
functional of the void shape, the void volume, the ap-
plied load and internal pressure p. The work done by
the load either varies the energy in the solid, or pro-
duces entropy in the diffusion processes. The first law
of thermodynamics requires that

(energy rate) + (dissipation rate) = (work rate) (2.1)

Figure 1 The schematic model of a gas-filled spheroidal void in elastic
solid under triaxial stresses σ1 = σ2 ≤ σ3.

Denote w as the strain energy per volume, γs the sur-
face energy per area on void surface and γb the energy
per area on grain-boundary. They are taken to be in-
dependent from each other for practical purpose. The
strain field in the body is determined by the elasticity
theory neglecting the effect of interface energies. The
total elastic energy and interface energies are

Ue =
∫

body
w dV , Us =

∫
surface

γs dAs,

Ub =
∫

grain-boundary
γb dAb (2.2)

Under the fixed mechanical load, the suitable potential
is

� = Ue + Us + Ub − (load × displacement) (2.3)

Furthermore,

Ue = (load × displacement)/2 (2.4)

for linear elastic solids. Thus, the thermodynamic po-
tential for linear elastic solids under constant load is

� = −Ue + Us + Ub (2.5)

For a given void, Ue is determined by the elasticity prob-
lem, Us is integrated over the area of the void surface
As and Ub over the area of the grain-boundary Ab.

Then (2.1) becomes

d�

dt
+ (dissipation rate) = 0 (2.6)

The second law of thermodynamics requires that the
dissipation be positive as atoms diffuse. That is, atoms
diffuse to reduce the potential of the system.

In the following, the difference of the potential en-
ergy between a spheroid and a sphere with radius ρ0 is
calculated, i.e.,

�� = �(spheroid) − �(sphere) (2.7)

The shape of a spheroidal void having the same volume
as a spherical one of radius ρ can be described by

X = Y = ρ

√
1 + m

1 − m
cos θ Z = ρ

1 − m

1 + m
sin θ (2.8)

The spherical void corresponds to m = 0, the crack to
m → 1.

An infinite body containing a spheroidal void sub-
jected to remote triaxial stresses and internal pressure,
stores infinite amount of strain energy. Yet, the energy
difference between a body containing a spheroidal void
and a body without void subjected to the same stresses
can be computed. The increase in strain energy upon
introducing a spheroidal void to an infinite solid, Ue,
can be formulated by following the method of Eshelby
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[24] as

Ue = 4πρ3(σ3 + p)2

3E
A (2.9)

where the dimensionless coefficient A, listed in
Appendix, is a function of the shape parameter m, the
stress ratio ω = (σ1 + p)/(σ3 + p) and the Poisson’s
ratio ν. σ1 and σ3 are positive for tensile stress and p
is positive for compression. Thus, the elastic energy
differs by

�Ue = 4πρ3
0 (σ3 + p)2

3E
(α3 A − A0) (2.10)

where α = ρ/ρ0, A0 is A of a spherical void with radius
ρ0. The increase in the surface energy upon introducing
a spheroidal void onto a grain-boundary is:

Us = 4πρ2γs B (2.11)

And the increase in the grain-boundary energy is:

Ub = −πρ2γb
1 + m

1 − m
(2.12)

where the dimensionless number B, listed in Appendix,
is a function of m. Thus, the interface energy differ by

�Us = 4πρ2
0γs(α

2 B − 1) (2.13)

�Ub = πρ2
0γb

(
1 − α2 1 + m

1 − m

)
(2.14)

Combining (2.10), (2.13) and (2.14), the total difference
in the potential is

��

4πρ2
0γs

= −�

3
(α3 A − A0) + (α2 B − 1)

+ λ

(
1 − α2 1 + m

1 − m

)
(2.15)

where λ = γb/4γs is interface energy ratio; � = (σ3 +
p)2ρ0/γs E is a dimensionless loading parameter that
describes the relative importance of the elastic energy
and the surface energy.

2.2. The critical value of �
As shown in (2.15), for a given �, � is a function of
shape parameter m, volume parameter α, stress ratio
ω and interface energy ratio λ. If α = 1, p = 0 and
λ = 0, corresponding to a vacuum void in a grain with
constant volume, (2.15) returns to the results obtained
by Sun et al. [20]. For the case of σ1 = σ2 = σ3, a
critical loading parameter �c = 16/9 was obtained. If
� exceeds the critical value �c, a spherical void will
collapse to a crack. For a grain-boundary void, the po-
tential described by (2.15) is a complicated function of
multi-parameter. To separately visualize the effect of α

and λ on the critical value �c and the equilibrium shape
of the void, we first set ω = 1 and λ = 0, corresponding

to a void within a hydrostatically stressed grain. Then
(2.15) reduces to

��

4πρ2
0γs

= −�

3
(α3 A − A0) + (α2 B − 1) (2.16)

Expand (2.16) in powers of m

��

4πρ2
0γs

= α2 − 1 + 1

2
(1 − α3)�

+ (1.6α2 − 0.9α3�)m2 + · · · (2.17)

Here only two leading terms are retained for small m.
When � > 16/(9α), the coefficient is negative for m2,
so that m = 0 maximizes �. When � < 16/(9α), the
coefficient is positive for m2, so that m = 0 minimizes
�. Consequently, � = 16/(9α) is the critical value �c,
below which the void keeps its spherical shape during
shrinking or growing.

Then, we set ω = 1 but λ �= 0, corresponding a void
located on grain-boundary. Fig. 2a displays the func-
tion � at several constant levels of α� for λ = 1/11
(data for pure iron with bcc lattice [25], γs = 2.2 J/m2,
γb = 0.8 J/m2. Each minimum and maximum on the
curves represents a stable and unstable equilibrium
state, respectively. A critical value α�c ≈ 0.86 can
be sought by detailed numerical analyses. As shown in

Figure 2 (a) The potential as a function of the void shape parameter m
at several levels of α� for ω = 1 and λ = 1/11. (b) Stability conditions
projected on the (m, α�) plane. The heavy solid and dotted lines are the
numerical solutions to the stable and unstable equilibrium shapes from
(2.15); the hollow circles are the stable equilibrium shapes predicted by
(2.23).
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Fig. 2a:

1. when α� = 0, the stress vanishes. � reaches a
minimum at m = me, and two maxima at m = 0 and
1. Any void will relax to a spheroidal one of me.

2. when α� ∈ (0, α�c), the surface energy domi-
nates. � reaches two maxima at m = 0 and mc, and
two minima at m = me and 1. The maxima act as en-
ergy barrier: a void of m < mc will relax to that of me,
but a void of m > mc will collapse to a crack.

3. when α� ∈ (α�c, ∞), the strain energy domi-
nates; � reaches the maximum at m = 0, and minimum
at m = 1. Any void will collapse to a crack.

The equilibrium states under several remote stress
states are plotted in the (α�, m) space, as shown in
Fig. 2b. The heavy solid and the dotted lines corre-
spond to the stable and the unstable equilibrium states,
respectively. The evolving direction in each region is in-
dicated by an arrow. A void settles to a rounded shape
when α� is small, but collapses to a crack when α� is
large. α� reaches a critical value at the joint point of a
heavy solid line and a dotted line.

Fig. 2 shows that the stable equilibrium shape of a
grain-boundary void (λ = 0) is not a sphere, but a
spheroid of me with elongation in the grain-boundary
plane [21]. Both the critical value �c and the equilib-
rium shape parameter me are a function of α, ω, λ. They
should be determined before we discuss the shrinkage
rate. Although they can be sought by detailed numerical
analysis, it is not convenient for practice. An approx-
imate expression for me and �c can be obtained by
expanding (2.15) in powers of m

��

4πρ2
0γs

= − �ω1

6
(1 − α3) + (1 − α2)(λ − 1)

− (α�ω2 + 2λ)α2m + (1.6 − α�ω3 − 2λ)α2m2

+ (0.76 − α�ω4 − 2λ)α2m3 + · · · (2.18)

where

ω1 = 2 − 2ω + 3ω2

ω2 = 0.57 − 0.14ω − 0.43ω2

ω3 = 0.88 + 0.135ω − 0.11ω2

ω4 = 1 + 0.1ω + 0.43ω2




(2.19)

only three leading terms of m are retained for small m.
Equilibrium requires that ∂�/∂m = 0, i.e.,

(α�ω2 + 2λ) − 2(1.6 − α�ω3 − 2λ)m

− 3(0.76 − α�ω4 − 2λ)m2 = 0 (2.20)

The critical value �c can be solved from the discrimi-
nant of (2.20) and expressed by

�c ≈ ω5 + ω6λ − (ω7 + ω8λ + ω9λ
2)1/2

αω10
+ ω11

(2.21)

ω5 = 2.991 + 1.5151ω + 1.254ω2

ω6 = 11.959 − 1.55ω + 0.9ω2

ω7 = 48.386 − 11.042ω − 7.75ω2

− 7.79ω3 − 21.6ω4

ω8 = 43.367 + 41.32ω + 43.245ω2

+ 7.3ω3 + 18.8ω4

ω9 = 19.8 + 25.75ω + 78.9ω2

+ 34ω3 + 73ω4

ω10 = −3.84153 + 1.96341ω + 1.714ω2

+ 1.151ω3 + 2.263ω4

ω11 = −0.12013 + 0.7652ω + 0.22715ω2

− 0.17983ω3




(2.22)

where ω11 is introduced to correct the error caused by
the truncation of the expansion of (2.15). The equilib-
rium state parameter me is

me = 1.6 − 2λ + α�ω12 + (λ1 + α�ω13 + α2�2ω14 + α�λω15)1/2

6λ − 2.2857 + 3α�ω4

(2.23)

λ1 = 2.56 − 1.828λ − 8λ2

ω12 = −0.8755 − 0.1347ω + 0.1102ω2

ω13 = −1.4955 − 0.7576ω − 0.627ω2

ω14 = 0.936 + 0.491ω + 0.428ω2

+ 0.288ω3 + 0.5658ω4

ω15 = −5.98 + 0.7752ω − 0.453ω2




(2.24)

As shown in Fig. 2b, the stable equilibrium shape pa-
rameter predicted from (2.23) has an acceptable accu-
racy to the numerical solution to (2.15).

Fig. 3 compares α�c predicted from (2.21) with
the numerical solution to (2.15). Excellent agreement
can be found. Once the critical value is obtained from
(2.21), the critical applied stress can be calculated by
using �c = (σ3 + p)2ρ0/γs E . The critical compressive
stress will increase and the critical tensile stress will
decrease if p > 0. So, the internal pressure will reduce
the tendency for the void to collapse under compressive
applied stress as argued by Gittins [21] and increase it
under tensile applied stress.

Figure 3 The comparison between the critical value α�c. The solid line
is calculated by using (2.21); and the hollow circles are the numerical
solution to (2.15).

3428



Figure 4 The schematic model for an array of gas-filled voids on a planar
grain-boundary under hydrostatic pressure.

3. Kinetics of the grain-boundary void
shrinkage by diffusion

In this section, we will derive the shrinkage rate of an
array of gas-filled grain-boundary voids located under
hydrostatic pressure σ1 = σ2 = σ3 = σ . The initial
radius of the void is ρ0, and the void spacing is 2b as
shown in Fig. 4. Let r be the distance along the grain-
boundary to the center of a void. It should be noted
that the basic Equation 2.15 is strictly valid only for an
infinite solid containing a single void. For the model
shown in Fig. 4, it can be approximatley used if the
initial size of the void is small enough compared to the
void spacing.

The excess chemical potential on the grain-boundary
is

�µ = −σn(r )� (3.1)

where σn(r ) is the net normal stress acting on the
grain-boundary, positive for tensile stress; � the atomic
volume.

The atom flux J along the grain-boundary is

J = − Dbδb

kT �
∇(�µ) (3.2)

where Db is the grain-boundary diffusion coefficient
(assumed to be isotropic), δb the grain-boundary thick-
ness, k Boltzmann’s constant and T the absolute tem-
perature.

When the applied stress is static, the grain-boundary
diffusion can be taken to be in a steady state, which is
[26, 27]

divJ = η (3.3)

where η is the number of atoms removed per unit time
and per unit volume from the grain-boundary, indepen-
dent of r because of the steady state.

Substituting (3.2) into (3.3), we obtain the differential
equation

∇2(�µ) + ηkT �

Dbδb
= 0 (3.4)

The appropriate solution to the distribution of excess
chemical potential on the grain-boundary is

�µ = C1r2 + C2 + C3 ln r (3.5)

where C1 = −kT �η/4Dbδb, C2 and C3 are constants
to be determined by the following boundary conditions.

Firstly, the excess chemical potential �µ on the void
surface can be expressed as

�µs = −γs(κxz + κxy)� + w (3.6)

where κxz, κxy are the principal curvatures on xz and xy
planes, taken to be positive for a convex surface. In a
material capable of matter transport by diffusion, �µ

must be continuous at the void apex (r = ξ ) where
it meets the grain-boundary. Rice and Chuang [28]
proved that the strain energy terms could be neglected
because grain-boundary diffusion effectively alleviates
the stress concentration at the void apex. So the excess
chemical potential at the void apex is given by

�µs(r = ξ ) = −γs(κxz + κxy)� (3.7)

For the spheroidal void described by me, the curvature
at the void apex, r = ξ = ρτ 1/2, is

κapex = −(κxz + κxy) = −τ 3 + 1

ρτ 1/2
, τ = 1 + me

1 − me
(3.8)

Thus, the continuous condition in the excess chemical
potential at the void apex is:

− �σn(r = ξ ) = −γs�(τ 3 + 1)

ρτ 1/2
(3.9)

Secondly, because of symmetry, the matter flux van-
ishes at r = b. So we have

(∂�µ/∂r )r=b = 0 (3.10)

Finally, the condition of mechanical balance is

∫ b

ξ

�µ

�
2πrdr =

∫ b

ξ

−σn(r )2πrdr

= −πb2σ − πξ 2 p (3.11)

We assume that the gas could not leak away from the
void. As the void shrinks, the initial pressure p0 will be
enlarged by the decrement of void volume. Assuming
ideal gas behavior, so p = p0/α

3.
Note that the equilibrium angle cosϕ = γb/2γs at the

apex of a grain-boundary void (see Fig. 4) can be satis-
fied only when the gradient in excess chemical poten-
tial along the void surface and grain-boundary is quite
small. The true equilibrium state is satisfied only if no
atom flux occurs. However, the diffusion process dis-
cussed here is essentially dynamic, which may change
the dihedral angle from the equilibrium one [27]. We
can, therefore, examine the void shrinkage in the case
where the dihedral angel can freely change.
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The removal of atoms from the grain-boundary to the
void causes adjacent grains to move close at a rate η�

[27], thus, decreases the void volume at a rate πξ 2 η�.
This term is important when the void size is comparable
with the void spacing [29]. The collection of atoms fur-
ther decreases the void volume at a rate π (b2 − ξ 2)η�.
So the total shrinkage rate of the voids can be given as

dV

dt
= −ηπb2� (3.12)

Solve the differential Equation 3.5 subjected to
the boundary conditions (3.9)–(3.11), we obtain the
number η

η = 8Dbδbγs

kT b2ρ
√

τ

ρσ
√

τ/γs + x2ρp0τ
3/2/(α3γs) − (1 + τ 3)(1 − x2τ )

[3 − 4x2τ + x4τ 2 + 4 ln(x
√

τ )]
(3.13)

where x = ρ/b. Thus, the shrinkage rate of the voids
is obtained from (3.12)

dρ

dt
= −�η/4x2 (3.14)

(3.14) exhibits the dependence of the void shrinkage
rate on the applied stress, the internal pressure, the ratio
ρ/b, τ (related to shape parameter me) and the mate-
rial parameters related to surface and grain-boundary
diffusions.

Defining the normalized shrinkage rate as

dρ∗

dt
= dρ

dt

kT b3

2Dbδbγs�

= − ρσ
√

τ/γs + x2ρp0τ
3/2/(α3γs) − (1 + τ 3)(1 − x2τ )

x3
√

τ [3 − 4x2τ + x4τ 2 + 4 ln(x
√

τ )]

(3.15)

4. Examples and discussion
In this section, we examine the shrinkage behavior for
an array of grain-boundary voids at temperature T =
973 K by using (3.15). The initial radius ρ0 = 2 µm and
the void spacing 2b = 40 µm. The relevant material
parameters for a pure iron with bcc lattice (α-Fe) are:
γs = 2.2 J/m2, γb = 0.8 J/m2, E = 2.1 × 1011 N/m2,
δb = 4.96 × 10−10 m, Db = 3.52 × 10−12 m2/s
[25, 29].

The interface energy ratio λ = γb/4γs = 1/11.
The critical �c calculated from (2.21) is 0.86 for the
initial void. So the critical compressive stress σc =
−√

0.86γs E/ρ0 = −478 MPa. The stable equilibrium
shape parameter me is calculated from (2.23).

Fig. 5 shows the normalized shrinkage rate of a
gas-free void at different external pressure levels. Un-
der fixed external pressure, the void shrinkage rate in-
creases monotonously as the voids become small. The
void shrinkage rate can be accelerated as the external
pressure increases.

The influence of the internal pressure p0 on the void
shrinkage rate is shown in Fig. 6. The shrinkage rate first

Figure 5 The normalized shrinkage rate for a gas-free grain-boundary
void under hydrostatic pressure.

Figure 6 The influence of internal pressure p0 on the shrinkage rate of
the grain-boundary void.

increases, then decreases until the void stops shrink-
ing as it becomes so small that the internal pressure
becomes high enough. Therefore, the gas-filled grain-
boundary voids cannot be eliminated. Residual voids
will inevitably exist even when a higher hydrostatic
pressure is applied. It is also imagined that if the ap-
plied pressure is reduced, the residual voids will grow
up to a certain degree.

Fig. 7 shows the relative dependence of the shrinkage
rate on the void spacing 2b. The rate decreases signifi-
cantly with increasing void spacing. The results are well
matched with that the growth rate of the voids is approx-
imately inversely proportional to the void spacing for a
purely diffusive creep [29]. Hence, void spacing is one
of the important factors that control the shrinkage rate
of the grain-boundary voids.

Integrating (3.15) numerically, we can obtain the
time spent by void healing. As shown in Fig. 5, the vac-
uum void can be completely healed under hydrostatic
pressure. The time needed to completely heal the gas-
free void is displayed in Fig. 8, which deceases as the
hydrostatic pressure increases. However, as shown in
Fig. 9, the healing time for the gas-filled grain-boundary
void increases infinitely when the void shrinkage rate
vanishes eventually.
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Figure 7 The relative dependence of the shrinkage rate on various void
spacings.

Figure 8 The healing time for the gas-free grain-boundary void at sev-
eral external pressure levels.

Figure 9 The healing time for the gas-filled grain-boundary void at dif-
ferent internal pressure levels.

5. Conclusions
A suitable thermodynamic potential has been estab-
lished, from which the critical bifurcation condition and
the stable equilibrium shape of a grain-boundary void
in stressed solid are obtained. Based on the kinetic law,
the shrinkage rate of the void is also derived. Some
important results are:

1. High external pressure may effectively accelerate
the shrinkage rate of the void. However, the load must

be kept to be less than critical value to maintain a stable
shape; otherwise the void will collapse.

2. Void on grain-boundaries cannot maintain a spher-
ical shape, even if stressed hydrostatically. The void
changes its shape continuously as it evolves to its equi-
librium shape.

3. The gas-free voids could be totally eliminated. For
a close gas-filled void, the internal pressure increases
as the void shrinks. The pressure will retard the shrink-
age rate, and eventually stop the shrinkage process as
it becomes high enough. The shrinkage rate is signif-
icantly affected by the void spacing, increasing with
decreasing void spacing.

Appendix
The increase of the strain energy upon introducing a
gas-filled spheroidal void into an infinite solid was com-
puted by following the method of Eshelby [24]. The
coefficient in (2.9) is

A = (2ω2C11 + 2ωC13 + ωC31 + C33)/2 (1)

where ω = (p + σ1)/(p + σ3), and

C11 = [(1 − S11)(1 − ν) − 2νS13]/�

C13 = [S13 − (1 − S33)ν]/�

C31 = [2S31(1 − ν) − 2ν(1 − S11 − S12)]/�

C33 = (1 − S11 − S12 − 2νS31)/�

� = (1 − S33)(1 − S11 − S12) − 2S31S13




(2)

all Sij can be found in Eshelby [24].
The surface energy was calculated by integrating the

surface tension over the spheroid surface. The coeffi-
cient in (2.11) is

B = ς2

2
+ ln(

√
ς6 − 1 + ς3)

2ς
√

ς6 − 1
(3)

where ς = √
(1 + m)/(1 − m).
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